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Abstract

.T};e bellxav‘ior of 1"hc main solar semidiuri]al tidal mode in a
dissipative atmosphere is studied both in a rotating sphcri;al'atmpsphcre
and by mcans of the equivalent gravity mode approxinﬁation. .Thc former
involves the numerical so‘lution oi' a two dimensional partial differential
eqﬁation which (due to the pfescnce of {riction) is non-sei)arable. The
latter involves apprbxinﬁting the tidal mode at the equator by means of
an internal gravity wave on a non-rotating planc; this approximation has
been used extensively in carlier .studics of the behavior of atmospherie
tides in the thermosphere where viscosity assumes dominant importance,
In .the prescnt study, dissipation is modelied by Iiowtogiaxl cooling and
Rayleigh friction, both of which are taken to increase invefsely with
mean density. Coefficients are c,ho.setn to é.ry'de.ly -simul’at.;e the effects of
molegular viséésity and conducitivity. The rés;hlt;s of thils study prov{ée'
an opportunity. to evaluate the equivalent gravity mode formalism.- Our
main find'ings are:

i) Below 130 km, where friction is unimportant, e'quivalcnt gravity
mode results are, for all practical purposes, identical to those at the
equator obtained from a spherical c;lculati'oh.

ii) Ab.ove 130 km amplitudes over the equator obtained from the
spherical calculation are about 30% smaller than those obtained from
the equivalent gravity mode calculations. Also, there is a 1_5_0 (1/2 hour)

\

difference in phase.
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' iii) The amplitude reduction over the equator, cited above, is
associated with a broadening of the latitude distribution of amplitude for
the oscillatory pressurc and tcxﬁpcraturc ficlds within the thermosphere.
There is also a significant variation of phascAwith latitude within the
thermosphere. Associated with the a.bove variations are significant

"changes in the latitude distribution of h orizontal velocity within the

thermosphere.



Equivaicnt Gravity Modes -- an interim cvaluation
1, Introduction,

" The solution of the problem. of lincarized internal waves (including
tidgs() in a‘n otherwise static atmosphere with fri;:tion on a'rotatin’g sphere
s rex'ldercd ‘especially difficult, ‘b'écausc the j_éi.nt‘p"r.e'scnce of fri'ction,
rotation and sphericity le'ad‘to a mAathematical problem in which altitude
and latitude dependence arc no longer separable (Chapman and Lindzen,
1970). Furthermore, when the.friction is dtlle.iz'; significant measurec to
the presence of molecular viscosity (as is the cast.: in the thermosphere)

: . A
the resulting equation is éf eighth order in altitude. Yet, the solut'ion of
this problem is of substantial importance since w.ithin the thermosphere,
" where tides virtually dominate the metecorology, we have a transition
from essentially inviscid solu'cio;us to solutions dominated by friction;
fbe beha?io? in the latter region is, signifiéz(ntly, determined by the
compiicated transition region,

In order to obtain some insight into the above problem without
tackling the non-separability 1 developed what'I calied the e':quivalent
gravity mode formalism (Lindzen, 1970; 1971; Lindzen and Blake, 1971).
This fornlali;m exploited the following facts: |
i) In the absence of friction the lincarized equations for internal
waves in an otherwise static atmOSphcre‘t;m a rotating sphere are

scparable in their horizontal and vertical dependences; the same is

truc on a rotating (or non-rotating) plane. The horizontal geometry



" and the rotation.aﬁect th.c scparation constants (known as equivalent
depths, viz., Lindzen, ;97[?) which in turn dctcrmine the vertical
structure. However, for the sa‘m:c cquivalent depths one will get the
same vertical strucfure .J;'ega’rdlc.s.s..of.thc hopi_ngai gcqnﬂ'ctry 01; :
rotation. | | " |
_ii) As a corollary to the abcéve consider.a planar, nonrotating
frictionless atmosphere where quite arbitrarily we identify one
hori.zontal dircction with the North-South directiop and the other with
the East-West direction. For any internal mode (whether tidal or not)
in a spherical rotating {rictionless atmosphcr.e, there exists a mode in
the nonz.'o.t_ating plgnar atmo'sphere which, through appropriate choice
of North-South wavenumber, will have the same East-West wavenuﬁuber
~ obtaining on the Sphere~at the equafor, as well as the same period and
vertical structure as the Spbe;ical mode,
iii)‘ The effects of friction are to a iarge extent cl'eterrr}iﬁed by the ratio
of diss_ipati\‘/evtime sAcal-c to wave' period. '
iv) On a nonrotating plane the frictional problem is separable.

The equivalent gravity mode formalism consists in taking a \x;ave
as described in item V.(ii) above apd matching it fo 'a t.iaal mode in a
rotating spherical atmosph.erc. One then examines the behavior of the
planar mode in an atmosphere whose vcrtiéal distribuﬁons of mean
températﬁre and friction (viscosity and ion drag) match those of the
ear£h’satmosphcrc,‘ It was argued that the results should approximate

those obtained at the equator’in a full calculation on a rotating sphere.



The 'problcm for a rotating sphere results {rom the fact‘ that
latitudinal structure of a given tidal mode will change with altitude when
friction becomes comparably important with t}?e coriolis force; the
chanéing latitudinal struc.ure can then prodgéc modifications in
vertical structure. It was felt, however, that in the peighborhood of

- the equator, where Coriolis terms are zcrb, such cffects ought té be
rel.ativcly small. It was shpwn, nioreovcr, that oscillations within the
thermosphere, cxcited by heating within the thermosphere, were not
very sensitive to the latitude distribution of the excitation. This last
finding was particularly important for diurnal oscillations in the
thermosphere yvhich it was shown would be almost entirely excited in
situ, Indeed the theoreAtical results obtained for diurnal osci]latior;s
(Lindzen, 1971, 193la) are reasonably cdmpatiblc with observations of
therrpospheric daily variations.

However, the equivalent gravity mode ’formalism also suggests
that there s‘hould be, withi.n the thermosphere, a large sexnidiurnal
oscillation (temperature amplitﬁde ZOOOK) which propagates into the
thermosphere from the mesosphere where it is excited by ultraviolet
" radiation absorbed by ozone, Semidiurnal oscillations of the predicted
magnitude have not, as yet, Egen found in the available thermospheric
data, and while the data are by no means certain, there is nonctheless
good ;'cason_ to rchamin'e the t};xc;'ory.' .Oxu\c of thc; first points oné_might '

question (though hardly the only onc) is the equivalent gravity mode - . .



formalism, itself, For'tuAnatcly_, it is at least qualitatively possible to

’

do this without i'ntegrating an cighth order non-secparable partial

: oo : )
differential equation. The point is that all our arguments conccrning the

ecquivalent gravity mode formalism should apply as well to an atmosphere
where the friction is due to Rayleigh {riction (lincar drag) with a
rate cocfﬁci(;,nt inversely 'proportional to density as to an atmosphere
whe‘rclfriction is duc to molecular viscosity. In the former case, we
have only to deal with a sccond order non-separable partial differential
equation whése nﬁmerical integration is economically fecasible, It
* thus becomes possible to compare an equivalent gravity mode solution
with an accurate numerical solution on a rotating sphere. Moreover,
the height dependence of the guantity .{’j’_ (where Sp is the

o
" pressure oscillation and. ps., is the mean pressure) in an atmosphere
with Rayleigh {riction (and/or Newtbnian_coolin;g) increasing as l/p0
‘(where Po is the mean density) is similar to, the behavi.or of the

‘oscillatory temperature and horizontal velocity fields in an atmosphere

" with molecular viscosity and thermal conductivity (Lindzen, 1968).

S
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A stludy, therefore, of the behavior of in the simple system

may offer quantitative insight into the behavior of the more realistic
system,

The study of a system with Rayleigh friction and Newtonian

cooling is the purpose of this paper.



2. Equations.,
" ¥or the inviscid hdal ‘problem (scc Chapman and Lindzen (1970) {fox
derivations) one may reduce the li‘ncarlzed cquat:ons of motion to a single

cquation in a single unknown. A convenient choice for the unknown is

I 3)‘-‘) .
G = - - : ‘
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where ~ = S%e/fc, = L4
RS .
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= time, z = altitude, p = pressure, Po = mean pressure and &p =

tidal pressure pefturhati.o‘n. The equation for G is
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wht;re J is the tidal hecating per unit mass and time,
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f=%/02c , 0 is the colatitude, s the zonal number of wave,
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KF:? , g = acceleration of gravity, H = RTo/g = local scala height,

o Y tidal frequency, w = carth's rotation rate and r = earth's radius, and

To = basic temperature. Equ.(2) may be solved by sepax:ation of variables.

The resulting equations for latitude dependence (Laplace's Tidal Fquation) is
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where hn is the separation constant and we have assumed

—

G=2Z Gu(z)®, .
Equ. (3) with the requirement of boundedness at the poles forms an

eigenfunction-eigenvalue prc;blcm for {@\ % and % \""’%

If we expand O in terms of (3)'s cigenfunctions (Hough functions); i. c.,

5= T 0 @a (e,

. . ; th - )
then the equation for the vertical structure of the n mode is
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The boundary conditions for (4) are ;. o
18a H N |
‘c;\‘.‘?n *‘(?\‘ﬂ." \3 G, =C at z=0

(derived from the requirement W =0 at z = 0),; and that no energy be
received from 2 , For waves on a planar, nonrotating atmosphere,
(3) is replaced by a trivial equation for which one has solutions of the

following form ' | - .

W, = @ g . .5



where WY corresponds to a zonal wavenurnber, m corresponds to a

latitude wavenumber and

b
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It proves useful to allow m to be non-integral. The cquation for
vertical struct.urc remains identical to (4). This forms the basis for the
equivalent g-ravity mode i.'ormali:ﬂ{n.m. The equivalent gravity wave being
a wave for which ¢ is equal to that of a tidal mode, K= ?;: | (the
spherical mode's zonal wavenumber at tbe gquator), and m is chosen
so that h equals the cquivalent depth of the corrcsponding spherical mode.
The resulting gravity wave will have the same vertical structure as the
spherical mode (Lindzen and Blake, 1971). Moxrcover ’the gravity wave fields
aro acymptctic to the spherical selutions as one approaches the equator,
The assumption of the equivalent gravity mode.formalism is that the
last feature remains approximately true in the ﬁz'esence of friction. The
extent to which the approximation holds, h.o:v'ever, still has not been -
securely determined,

To make the problem clearer we shall explicitly introduce Rayleigh
friction and Newtonian cooling. These enter the ccitlations' of horizontal
momentu.m énd energy as follows:

vl?-s;{—§ ‘.‘: .o 1\ __,-——-c( P .
Qe Veos ~ & d”s\ })bk 7
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where v, a are the Rayleigh friction and Newtonian cooling coefficicents,
r:equ:ctivcly; u the northerly, v thé' wé‘sterly wind velocities and § T
the temperature; Po is ._the mean density ;listribtit.i.bn.
In terms of the geopotential (or, more precisely, 6p/po), the
final equation is
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--te is related to G by:
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Due to the joint prcsenée of v and (s, equ.(10) is no longcr separable.
It is a two-—dimehsional equation which must be solved numcrically.
On the othcr hand the cquauons fox a nonr ot'ltmg p]anar atmosphm c

remain scparable with equs. (5) and (6) still h-olding Equ. (4) bccomcs
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Equ, (11). must also be solved numerically, but it is only one-dimensional,

Our procedure will be to focus on the main symmetric semidiurnal

mode for which h = 7.85 ki, g =477l day, and s =2, v and a are

chosen to simulate dissipative time scales duc to viscosity and conductivity;

dissipative effects arc, therefore, negligible below about 100 km. The

explicit choice is

vz G214 ld“‘b mlgec”t W exp( § "!;TT"43

wheve H = gclde \\eiﬁ\\t W metevs .
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A =1,185 x 10 6 scc ! exp ("‘(-—E:) ﬂ» ) (12a,b, c

!

* %/ simulates infrared cooling (which proves to have a negligible effect

on the main semidiurnal modc).

Our excitation will be due to ozone and .\vdtcr vapor absorption,
both of which are located below 100 km. In this region, inviscid modal
(Hough modes) stlructure is meaningful, and we, in fact, consider
excitation of the form of the main senlidiulrnal mode; i. €., in a;m inviscid
atmosphere only a single mode would be excited. The vertical distribution
of excitation is givgn in Chaprnan and Lindzen (1970). " An identical
vertical distribution of excitation is uscd.for the.equivalcnt gravity mode
_(\;iz. , Lindzen and Blake, 1971). For ‘To we use the ARDC sta‘ndard

atmosphere. The composition of the atmospherc (and hence the gas

(

constants) are assumed constant,
Both equations (10) and (11) are solved by the method described in
Lindzen and Kuo (1970). In both instances a resolution of .5 km in the
g -x

vertical is used. In both cases solutions asymptote to G = &

as Z > 08 . The asymptotic rcg-imc sets on by 250 km. We therefore

~A - G :
take ‘C.)._:‘- = —- T at z = 300 km. For equ.(10) we find eleven points
7 H |

from pole to pole to constitute adequate resolution; 21 points altered
solutions by less than 5%. ‘We will comparc the spherical solution of

&'P/o at the -cquator with the equivalent gravity mode solution.
_ g M

We will also consider the deviations of the latitude $tructures’ obtained
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on a sphere from thosc of inviscid Hough modcs.
3. Results.

In YFigure 1 we show the distribution witi} h.éight of the 3mp1itudc
and phasec of SF/Fo both for the c. g. m. calculation and at the
" equator for the spherical calculation, Also s}-)own are results at the
equator for a dissipationless atmosphere,  The reason for showing the
dissipationless results will be discussed later., Restricting oursclves to
the two dissipative cases we sec that there is yirtually perfect agrcement
below about 80 km. Above 130 km noticeable differences begin to develop.
Above 200 km these diffcrences amount to about 1/2 hour (or,
equivalently, 150) in phasec; amplitudes for calculations on a rotating sphere
are about 30% less than those obtained ‘from e.g.m, calculations. The’
1z;.tter difference is not surprising: when one has a transition from

. . . . g . . '
exponentially increasing amplitudes to constant amplitude with height ,

This is precisely the behavior of horizontal vclocity and temperature

when dissipation is due to moleccular viscosity and _conductivity.

small variations in the height and nature of the transition can lead to
significant amplitudc differences above the transition,
Between 80 km and 130 km there are small differcnces between

¢.g. m. and spherical calculations (amounting to a few minutes of

phasec and a few 'pcrccnt in amplitudc)'which, while too small to be of
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}Sl’&ctica]. significance, appear to be real, Somc idea of the origin of thcsg
small discrepancies ﬁiay be obtained by comiparing c.g.m, results with
dissipationless. results .in Figu:'é la. The diffcrences below 130 km arisc
froxni the fact that dissipation varying with bci‘ght can causc the |
reflection of internal gravity waves. This madtter is rcviev&;cd in Lindzcn
- (1970). On th_e other hand, below 130 km dissi.pati«c}nlcss and dissihpativc
results for a rotating sphere arc vi.rtually,identical, suggesting that t.hc
reflectivity has becn substantially diminished.

A study of the variation of the semidiurnal tide with latitude, as
' obtained from the spherical calculation, casts some light on the
results _shown'in Figure 1; it also shows some: rather ﬁnexpccted
aspects of the interaction of {riction and rotation .i'n a spherical atmosphere.
In Figures 2 and 3 we show, repséctiveiy, the variation of amplitude
and phase with height for g"/i'a:, (i.e., the fractional variation of

-

pressure due to the main semidiurnal mode)’at different latitudes.

We sec in F\igure 2 that the émplituci'e' w);riation is similar at all latitudes
for 2z 2130 km -- indicative of the fact that the t..i'de propagates
vertically thhout change of horizontal form.: Smnlarly, we see in
Figure 3 that the phasc is independcnt of latitude below 130 kim, These
results are c;.:actly what is obtained from inviscid theory whe-n only the
main mode is excited. However, above 130 km we sce that the apiplitude

.~

profiles draw'closcr_togcthcr, More cxp.l-icitly;; { %—(:— \ at y=.8

(latitude = 53. 20) increascs up to 170 km, asymptoting to a constant
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.above this height; at y = 0 (cquator, y=cos 0), on the other hand, ‘ {%Z—\
increases up to 150 km, then decrcases about 3.0% before asymptoting to a
constant abovle. 200 km, This leads to a- latitud}inal sprecading of the
semidiurnal main mode between 130 km and 200 km. As can be seen in
Figure 3, the transition region also produces a variation ;f phase with
latitudé that .persists thro'ughout thc upper thermosphere. This variation
amounts to about 90° of phase between y = 0 (the equator) and y = 0.8
(latitude = 53.2°).

The alteration of latitude structure within the transition region
(130-200 km) is the most Signiﬁcént result of the spherical éalculation.
Although our artificial choice_ of dissipative processes precludes a.

dircct ascsociation of calculated magnitudes with those that mionl

expcéted in the thermbsphere, the calculated changes of Jatitude structure

should be qualitatively indicative of what might happen in the real
atmosphere. These changes are displayed in Figures 4a,b,c, and d T

where the variation of amplitudes (units arbitrary) and phase with latitude

~

both below 100 km andl above 200 km are shown for i.f_ , u', v! and
: >
6T reSpectiv'ely, In the frictionless region both (‘lrf—\ and ja|

have identical horizontal structures (Hough functions). Morcover, the
latitude distribution of both is broadened inthe transition region. However,

the variation of phase with Kitude (above 200 km) is greater for 6T

3l
2

latitudinal structure of [ul and | v\ is rather striking. Below

than for . The effect of the transition zone on the

the transition zone, the westerly velocity ‘v . , has a relative
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minimum at the equator; | vl increases away from the equator to a
maxixﬁum ncax 30o which is about 17% greater than the value at the
equator and then decrcases to zero at the poles. Akove the transition
zone, [ v| dccrcas;s monotonically away fi‘om the cquator. The
northerly velocity, which by symmetry is zcro at the equator reaches a
maximum near 400 beliow. the transition, and near 300 above the transition
zone, For all {iclds, thcre-are no phase variations with latitudc below

the transition zone; above the transition zonc the phases of scmidiurnal

oscillations at the equator lead those at 52° by 2 to 4 hours.

4, Imp].ic;ltions for the thermosphere.

The preceding resulis show in Getail how friction and rotation
interact in' anh atmosphere where {riction increascs exponentially from
an inconscquential value bclow. 130 km to vlal\/aes which dominate atmosy-h-eri.c
behavior abovle 250 km, While the Specific rnvodel for friction (an'd thermal
dissipation) is not realistic, the results give us insight into Wh;t is
omitted when we adopt the equivalent gravity mode formaligsm. The
effect of primary i.mportanc.e is the broadening of the latitudinal
distributions of ficlds like pressure and temperature with the co;z- -
comumitent 30% dccrcase of oscillatory ampl.itudes in the equatorial
thermosphere. Similar broadcning may; be expected to occur when g

friction is duc to molecular viscosity. Thus in Lindzen (1971) the

equivalent gravity mode formalism was used to predict a thermospheric



15.

semidiurnal temmperaturc oscillation with an amplitude of 180?1( oy Mmore

zlt the cquator; the prescnt calculations suggcst.that calculations on a
.rotat:ing sphcfe might predict amplitudc.s on the ordexr of only 120°K.
4‘1\5 alrcady pointed out in Lindzen‘(l971), the latter valuc is still
lz:rgé.r than what currcnt obse’rvationé. sué‘gest,

Sinlilafly, the impfh:‘cation ‘o'f~the present cal_c..ulatidns that 6nch
should observe a phase variation with latitudc should hold for more
realistic models of dissipation as well, Such behaviof has obvious
ramifications (or the analysis of data -- thch in some instances
involves averaging over latitude,‘ a procedure, wﬁich f'or phase vairi.ations
on the order of those in Figure 4d, would leadA to"_signiﬁcant undercstimatcs
of‘s'emic]iurnal amplitudes,

Finally, it should be added that the accurac‘y‘ of the e¢quivalent
gravity mode formalism at the.equator is '\yithin the limits suggested in
Lindzen (1971). However, Figure 4 implics ::hat away from the equator '

account must be taken of the variation of latitudinal structure.
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Figure Legends

F'ig. la. Amplitude of §.l’.. - {for the main~solar semidiurnal
’ © : )
mode at the eguator for equivalent gravity mode calculation
(with dissipation), and r;)tz'lting, spherical calculations with
and without dissipation. (N, B, 21 pts. in latitudc's have becn
use.d for higher e.iccurac'y in the spherical calculations shown.)

Fig.lb. Same as la but for phase.

Fig, 2. Amplitude of %-OB for the main solar semidiurnal
(-4 .

_mode at various latitudes (N, B, y = cos of latitude) for

rotating, spherical calculation with dissipation.
Fig.3. Same as 2 but foer phase.

Fig.4a, Amplitude (arbitrary units) and phase (arbitrary origin) of
tr

“Po

" below 100 km (solid).

as functions of latitude above 200 km (dashed) and

Fig.4b. Same as 4a but for u',
Fig.4c. Same as 4a but for v'. _ ‘ .

Fig.4d. Same-as 4a but for §T.
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